

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE in Chemistry (4CH1) Paper 1CR

Question number	Answer	Notes	Marks
1 (a)	X evaporating	ALLOW evaporation	3
	Y condensing	ALLOW condensation	
	Z freezing		
(b)	M1 solid particles vibrate about a fixed position	REJECT do not move	2
	M2 gas particles move randomly	ALLOW gas particles move	
		rapidly/quickly/freely	
			Total 5

Ques		Answer	Notes	Marks
2 (a)		nitrogen	ALLOW N ₂ IGNORE N	1
	(ii)	argon	ALLOW Ar	1
	(iii)	carbon dioxide	ALLOW CO ₂ /H ₂ O(g)/water vapour/CH ₄ /methane	1
(b)	(i)	brown/red-brown/orange-brown	ALLOW orange	1
			IGNORE red	
			ALLOW rusty/rust coloured (looks like)rust/rusted	
	(ii)	M1 (change in length of column =) 84 - 69 OR 15 (mm)		2
		M2 <u>15 x 100</u> = 17.86/17.9 (=18)	M2 subsumes M1	
		04	Working must be shown to score M2 Ecf for M2 eg 18/84 x100 =21.4 REJECT 17.85/17.8 as wrongly rounded	
	(iii)	not all the oxygen in the sample of air had reacted with the iron wool OWTTE /not enough iron wool	ALLOW there is water vapour in the column of air/changes in temperature / pressure / location ALLOW Reaction incomplete/reaction too slow	1
				Total 7

Question number	Answer	Notes	Marks
3 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4
(b) (i)	M1 (compounds with the) same molecular formula M2 (but with) different structural/displayed formulae	ALLOW same numbers of each atom ALLOW different arrangement of atoms	2
(ii)	M1 displayed formula of butane H-C-C-C-H H H H H H H H H H H H H H H H H H H H		2
(c) (i)	HBr	REJECT incorrect case letters Ignore name	1
(ii)	D substitution A is incorrect as it is not an addition reaction B is incorrect as it is not a decomposition reaction C is incorrect as it is not a neutralisation reaction		1
(iii)	ultraviolet (radiation)	ACCEPT UV (radiation) ALLOW ultraviolet/UV light/sunlight	1
(d) (i)	$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$ M1 all formulae correct M2 balancing of correct formulae	ALLOW multiples and fractions M2 dep on M1	2
(ii)	An explanation that links the following points M1 carbon monoxide/CO (is the gas produced) M2 (carbon monoxide) limits the capacity of the blood/haemoglobin to carry oxygen OWTTE	M2 dep on M1	2
			Total 15

Question number	Answer	Notes	Marks
4 (a)	Any two from M1 concentration of solution A		2
	M2 concentration of solution B		
	M3 volume of solution B	ALLOW amount of solution B Ignore apparatus	
(b) (i)	all points plotted correctly to the nearest grid line		1
(ii)	anomalous point at 25°C circled	ALLOW ecf from incorrect plotting	1
(iii)	smooth curve of best fit ignoring the anomalous point	ALLOW Ecf if 35,130 circled	1
(iv)	Any one from		1
	M1 temperature was higher than 25°C		
	M2 started the timer too late /stopped the timer too early/took reading too early	ALLOW ecf from incorrect anomalous result circled so 35,130 gives slower as temp<35/timer	
(v)	M1 vertical line on graph drawn to curve from 55°C	stopped too late ALLOW extra point at 55°C on curve	2
	M2 value obtained from candidate's graph	expected value 115 to 117 s	
(c)	M1 <u>1</u> OR 0.00641	ALLOW use of value from graph	2
	$M2 ext{ } 6.41 \times 10^{-3}$	ALLOW 6.4 x 10 ⁻³	
(d)	An explanation that links the following three points		3
	M1 rate (of reaction) increases	ALLOW reaction is faster/ speeds up	
	M2 (mean) kinetic energy of particles increases	ALLOW particles move faster	
		IGNORE vibrate more /faster	
	M3 more successful collisions per second/unit time/ more frequent successful collisions	ALLOW more frequent collisions having energy > activation energy	
			Total 13

	Questi numb		Answer	Notes	Marks
5	(a)	(i)	5/five		1
		(ii)	46		1
		(iii)	M1 hydrocarbons contain only carbon and hydrogen (atoms)	REJECT molecules	2
			M2 methanoic acid/it contains oxygen (as well as hydrogen and carbon)		
	(b)	(i)	M1 (electrostatic) attraction between nuclei	Must be plural	2
			M2 (and the) shared pair of electrons		
			OR		
			M1 (electrostatic) attraction between shared pair(s) of electrons		
			M2 and nuclei	Must be plural	
		(ii)	M1 3 pairs of electrons for 3 single bonds	ALLOW any combination of dots and crosses	3
			M2 2 shared pairs for one C=O double bond		
			M3 rest of molecule fully correct (lone pairs on oxygen atoms must be shown)	M3 dep on M1 and M2 correct	
	(c)		divide percentages by relative atomic	0 marks if division by	3
	(0)		massesdivide results by smallest value to obtain ratio	atomic numbers or upside-down calculation	3
			write empirical formula		
			Example calculation		
			M1 C H O 52.2 13.0 34.8 12 1 16		
			M2 4.35 2.175 13.0 2.175 2.175 2.175		
			OR 2 6 1		
			M3 C₂H ₆ O	ACCEPT symbols in any order	
					Total 12

Question number	Answer	Notes	Marks
6 (a) (i)	B bromine		1
	A is incorrect as astatine is a solid at room temperature		
	C is incorrect as chlorine is a gas at room temperature D is incorrect as fluorine is a gas at room temperature		
(ii)	C dark grey		1
	A is incorrect as solid iodine is not black B is incorrect as solid iodine is not dark brown D is incorrect as solid iodine is not purple		
(iii)	M1 test with (damp blue) litmus paper	ALLOW Universal indicator paper/ pH paper	2
	M2 bleaches/turns white	ACCEPT turns red and then bleaches	
(b)	M1 71.2 x 35 + 28.8 x 37 OR 3557.6	Correct answer without working scores 3	
	M2 71.2 x 35 + 28.8 x 37 OR 35.576 100 OR 35.576	M2 subsumes M1	
	M3 35.6	35.5 without working scores 0	
(c)	An explanation that links the following four points		4
	M1 add chlorine (solution) to sodium iodide (solution)	ALLOW mix the two solutions	
	M2 solution turns brown	Sociations	
	M3 iodine/l ₂ is displaced	ALLOW iodine/I ₂ is formed	
	M4 (so) chlorine is more reactive (than iodine) ORA		
		REJECT incorrect use of iodide or chloride once only	
		charac once only	Total 11

Question number	Answer	Notes	Marks
7 (a)	M1 (bright) white flame/light		2
	M2 white powder/solid (formed)	ALLOW white smoke/ash	
		ALLOW grey powder	
		REJECT white precipitate	
(b) (i)	gives out/releases heat (energy)/thermal energy	IGNORE energy alone	1
(ii)	2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3	ALLOW multiples and fractions	1
(iii)	An explanation that links two of the following pairs of points		2
	M1 aluminium/Al gains oxygen so is oxidised	ACCEPT aluminium loses electrons so is oxidised	
	M2 iron oxide/Fe ₂ O ₃ loses oxygen so is reduced	ACCEPT iron ions/Fe ³⁺ ions gain electrons so are reduced	
	OR	reduced	
	M1 aluminium/Al is oxidised and iron oxide/Fe ₂ O ₃ is reduced	ACCEPT aluminium loses electrons and iron ions/Fe ³⁺ ions gain electrons	
	M2 as aluminium/Al gains oxygen and iron oxide /Fe ₂ O ₃ loses oxygen		
		ALLOW answers in terms of change in oxidation number	
(c) (i)	An explanation that links the following two points		2
	M1 to allow air/oxygen to enter the crucible OWTTE		
	M2 so that oxygen can react with the magnesium		
(ii)	A description that refers to the following points		2
	M1 heat the crucible again and reweigh		
	M2 repeat until constant mass	Heat and reweigh to constant mass scores 2	
			Total 10

Questi numb		Answer	Notes	Marks
8 (a)	(i)	(thermal) decomposition		1
	(ii)	M1 amount of PbCO ₃ = $\frac{5.34}{267}$ = 0.02(00) (mol)	Correct answer without working scores 2	2
		M2 mass of PbO = 0.02(00) x 223 = 4.46 (g)	ACCEPT alternative methods	
(b)	(i)	M1 diagram showing delivery tube going into test tube containing liquid	REJECT if sealed with a bung	2
	(ii)	M2 limewater labelled (limewater) turns cloudy/milky	ALLOW white precipitate	1
			(ii) dep on mention of limewater in either (i) or (ii)	
(c)		An explanation that links six of the following points		6
		M1 silicon dioxide has a giant (covalent) structure		
		M2 covalent bonds are (very) strong		
		M3 (in silicon dioxide) many covalent bonds need to be broken		
		M4 a large amount of energy/more energy is required to break the bonds in silicon dioxide	No M3 or M4 if reference to intermolecular forces in silicon dioxide	
		M5 carbon dioxide has a simple molecular structure/is a simple molecule	in sixtes it diskide	
		M6 the forces between the molecules/intermolecular forces (in carbon dioxide) are weak	No M6 or M7 if any reference to weak covalent bonds or breaking of covalent	
		M7 very little energy/less energy is needed to overcome the forces between the molecules/intermolecular forces (in carbon dioxide)	bonds in carbon dioxide Accept bonds between molecules weak	
			A statement such as 'more energy is needed to break the bonds in silicon dioxide than to overcome the forces between the molecules/intermolecular forces (in carbon dioxide)' scores M4 and M7	
				Total 12

Question number	Answer	Notes	Marks
9 (a) (i)	$Zn (s) + 2HNO3(aq) \rightarrow Zn(NO3)2(aq) + H2(g)$	ACCEPT upper case letters	1
(ii)	effervescence/bubbles/fizzing	IGNORE gas produced / given off	1
		IGNORE hydrogen produced / given off	
		ALLOW colourless solution formed/gets hot/exothermic reaction/zinc dissolves IGNORE crystals form	
(b) (i)	so all the nitric acid reacts/is neutralised		1
(ii)	A description which refers to the following five points		5
	M1 filter off the excess zinc		
	M2 heat the solution until crystals form	ALLOW heat until the solution is saturated/ heat until crystals form on the end of a glass rod/heat to evaporate some of the water	
	M3 leave the solution to cool (and crystallise)	Some of the water	
	M4 pour/filter off excess liquid (to obtain crystals)	IGNORE washing	
	M5 leave (crystals) to dry	ALLOW any method of drying that avoids excess heat e.g. filter paper, a desiccator, a warm oven	
		If heated to dryness only M1 can be scored	
		If solution is not heated only M1, M4 and M5 can be scored	
(c)	$2Zn(NO_3)_2.6H_2O \rightarrow 2ZnO + 4NO_2 + O_2 + 12H_2O$		2
	M1 all formulae correct		
	M2 balancing of correct formulae	M2 dep on M1	
			Total 10

Question number	Answer		Notes	Marks
10 (a)	M1 so that the solid/ammonium nitrate dissolves more quickly		IGNORE speed up reaction	2
	M2 so that the temperature is even throughd solution OWTTE	out the	ALLOW heat transfers evenly (throughout the solution)	
(b)				2
	initial temperature of distilled water in °C	23.4		
	minimum temperature of solution in °C	19.4		
	temperature change in °C	4.0	must be to 1 dp ALLOW ecf on incorrect mimimum temperature	
(c) (i)	M1 (Q =) 50 x 4.2 x 3.9 (J)		answer of 819 or 820 without working scores 2	2
	M2 (Q =) 819/820 (J)		ALLOW use of 4.0 giving an answer of 840	
(ii)	 find moles of NH₄NO₃ division of Q by moles conversion to kJ/mol answer with correct sign 		correct answer without working scores 4	4
	M1 (amount of NH ₄ NO ₃ =) 2.8 ÷ 80 OR 0.0	35 (mol)		
	M2 819 ÷ 0.035 OR 23 400 (J/mol) M3 23 400 ÷ 1000 OR 23.4 (kJ/mol)		use of 820 gives 23 429 use of 800 gives 22 857 use of 840 gives 24 000 use of 820 gives 23.4 use of 800 gives 22.9 use of 840 gives 24.0	
	M4 (ΔH =) +23.4/+23 (kJ/mol)			
(d)	A description that refers to the following po M1 add sodium hydroxide (solution to the an nitrate and warm)			3
	M2 test the gas/ammonia evolved with (dam litmus paper/(damp) universal indicator pap		M2 and M3 dep on M1	
	M3 (red litmus) turns blue/ (universal indica turns blue/purple	tor)	No M2 or M3 if solution tested with litmus/ universal indicator paper	

(e)	An explanation that links the following points	2
	M1 the temperature increases/rises	
	M2 so the reaction is exothermic	
		Total 15